DATA5000 Programming AI for Business Analytics Assignment Help

Assessment 1 Information

Subject Code:DATA5000
Subject Name:Programming AI for Business Analytics
Assessment Title:Skills-Building:Causal AI with Python
Assessment Type:Practical Python Causal Artificial Intelligence Coding
Presentation Length:180Minutes(+/-10%)
Weighting:25%
Total Marks:25
Submission:In Class - submit downloaded notebook via Dropbox
Due Date:Week 5

 

Your Task

Follow the steps within the Google Colab notebook to complete the Python code and interpret the results. At the end of the assessment upload the notebook with your answers and code changes to the portal. Uploading the wrong file will be treated as poor project management practice and penalised accordingly.

Background

Imagine that you are a Business Analyst in a top consulting firm and that you have been tasked with the identification of factors that cause Australian macroeconomic changes.

 

This skills-building exercise is a workflow that has been designed to simulate this use case and consolidate your practical knowledge of Python, Google Colab, and machine-learning approaches for causal inference.

 

The Google Colab notebook for this assessment will be provided on the day of the assessment.

Assessment Instructions

 

Section #1: Machine Learning 

 

1A: Installation & Module Imports

 

Step 1: Install Python libraries and import Python modules.

1) Run all the codes that will install and import the necessary Python libraries and models.

 

Step 2: Load and import macroeconomic data as a dataframe.

  1. Load data: read csv file containing macroeconomic data. Create a suitable variable name for the dataframe.
  2. Write the Python code that displays information about the dataframe.

1B: Ordinary Least Squares

 

Step 1: Basic Dataframe Operations

Perform the necessary steps to transform the dataframe in a format ready for machine learning.

 

Step 2: Perform Ordinary Least Squares

Perform Ordinary Least Squares (OLS) and answer the following question: what proportion of the outcome variable could be explained by the predictor, or feature, variables?

 

1C: Gradient Boosting Method

 

Step 1: XGBoost Machine Learning Algorithm

Create an XGBoost ML model in Python. Create a suitable variable name for the model.

Section #2: Explainable Machine Learning 

2A: SHAP

 

Step 1: Create a SHAP Waterfall Plot of XGBoost ML

What are the Top 5 features that are correlated with the outcome variable?

 

Step 2: Create a SHAP Force Plot of XGBoost ML

Write no more than one paragraph summary of the insights shown by the SHAP force plot.

 

2B: Partial Dependence Plots (PDPs)

 

Step 1: Create a PDP of one feature against the outcome variable

 

Select one data feature and create a Python code that will display the PDP chart showing effects of this feature on the outcome.

 

Step 2: Select a second data feature and create a PDP against the outcome variable Select another, different, data feature and create a Python code that will display the PDP chart showing effects of this feature on the outcome.

Section #3: Predict Causal Factors 

 

Step 1: Use EconML AI Causal Learner

  1. Create a suitable variable name for the causal machine learner.
  2. Complete the Python code to create an EconML causal learner.

 

Step 2: ATE Chart – Visualisation of Causal Factors

  1. Write Python code that will display a chart of the Average Treatment Effect (ATE) magnitudes, or values, for all the data features.
  2. Which of the data features are macroeconomic causal factors?
  3. Given the macroeconomic causal factors, what recommendations would you make to the Australian government?

Important:

 

  1. Complete the notebook within the allocated time of 3 hours during workshop.
  2. Create a new “text/markdown” cell in Google Colab to record your answers. There is no need to create a separate report.
  3. At the end of your class download and submit the notebook with the code changes to the portal.

    Note: ensure that you upload the correct file.

Important Study Information

 

Academic Integrity and Conduct Policy

https://www.kbs.edu.au/admissions/forms-and-policies

 

KBS values academic integrity. All students must understand the meaning and consequences of cheating, plagiarism and other academic offences under the Academic Integrity and Conduct Policy.

 

Please read the policy to learn the answers to these questions:

 

  • What is academic integrity and misconduct?
  • What are the penalties for academic misconduct?
  • How can I appeal my grade?

Late submission of assignments (within the Assessment Policy)

https://www.kbs.edu.au/admissions/forms-and-policies

  
 A screenshot of a calendar  Description automatically generated

Length Limits for Assessments

 

Penalties may be applied for assessment submissions that exceed prescribed limits.

Study Assistance

Students may seek study assistance from their local Academic Learning Advisor or refer to the resources on the MyKBS Academic Success Centre page. Further details can be accessed at https://elearning.kbs.edu.au/course/view.php?id=1481

Generative AI Traffic Lights

 

Please see the level of Generative AI that this assessment has been designed to accept:

 

TrafficLightAmount of Generative Artificial Intelligence (GenerativeAI) usage

 

Evidence Required

This assessment

()

 

 

 

Level 1

Prohibited:

 

No GenerativeAI allowed

 

This assessment showcases your individual knowledge, skills and/or personal experiences in the absence of Generative AI support.

 

 

The use of generative AI is prohibited for this assessment and may potentially result in penalties for academic misconduct, including but not limited to amark of zero for the assessment.

 

 

 

 

 

 

 

 

 

 

Level 2

 

 

 

Optional:

 

You may use GenerativeAI for research and content generation that is appropriately referenced.

 

See assessment instructions for details

 

This assessment allows you to engage with Generative AI as a means of expanding your understanding, creativity, and idea generation in the research phase of your assessment and to produce content that enhances your assessment. I.e., images. You do not have to use it.

 

The use of GenAI is optional for this assessment.

 

Your collaboration with GenerativeAI must be clearly referenced just as you would reference any other resource type used. Click on the link below to learn how to reference GenerativeAI.

 

https://library.kaplan.edu.au/referencing-other- sources/referencing-other-sources-generative-ai

 

In addition, you must include an appendix that documents your GenerativeAI collaboration including allprompts and responses used for the assessment.

 

Unapproved use of generative AI as per assessment details during the content generation parts of yourassessment may potentially result in penalties for academic misconduct, including but not limited to a mark of zero for the assessment. Ensure you follow the specific assessment instructions in the section above.

 

 

 

 

 

 

 

 

 

 

 

Level 3

 

 

 

Compulsory:

 

You must use GenerativeAI to complete yourassessment

 

See assessment instruction for details

 

This assessment fully integrates Generative AI, allowing you to harness the technology's full potential in collaboration with your own expertise.

 

Always check your assessment instructions carefully as there may still be limitations on what constitutes acceptable use, and these may be specific to each assessment.

 

You will be taught how to use generative AI and assessed on itsuse.

 

Your collaboration with GenerativeAI must be clearly referenced just as you would reference any other resource type used. Click on the link below to learnhow to reference GenerativeAI.

 

https://library.kaplan.edu.au/referencing-other- sources/referencing-other-sources-generative-ai

 

In addition, you must include an appendix that documents your GenerativeAI collaboration including allprompts and responses used for the assessment.

 

Unapproved use of generative AI as per assessment details during the content generation parts of yourassessment may potentially result in penalties for academic misconduct, including but not limited to a mark of zero for the assessment. Ensure you follow

the specific assessment instructions in thesection above.

 

Marking Guide

Standardsfor this TaskMarks

Application of Machine Learning (5 points)

Students should:

  • Run Python codeto prepare a dataframe.
  • Run Python code to create and train an XGBoost ML model.

Students may:

  • Create a text/markdown cell and explain the adjusted R- squared value.

 

 

3

2

 

 

 

 

/5

Explainable Machine Learning (10 points)

Students should:

  • Run code to create the two SHAP plots.
  • Run code to create the two Partial Dependence Plots.

Students may:

  • Create a text/markdown cell to explain the results of the two SHAP plots. What are the factors that XGBoost has learned fromthe data?

 

 

5

5

 

 

 

 

 

 

/10

Predict & Explain CausalFactors (10 points)

 

Students should:

  • Run code to createa Causal AI learner.
  • Run the codeto create an ATEchart.

Students may:

Create a text/markdown cell to interpret the ATE chart, explain the insights, and suggest recommendations.

 

 

 

 

5

5

 

 

 

 

/10

 

A fail mark will be awarded for this assessment:

  • If you do not have their cameras on (applies to online classes only)
    • If the submission is more than 10 minutes late
    • if there is evidence of generative AI, contract cheating and/or other forms of academic misconduct.
    • if a quantitative model is not presented and only qualitative discussions are presented.
    • If you present generic/irrelevant information and/or not addressed assessment requirements.


 

Note 1: A penalty will be imposed if any part of the assessment is deemed by the assessor where it shows an over- reliance on AI-generated content in your answer. There needs to be a demonstration of original thought.

 

If you want to challenge the penalty awarded based on Note 1, your assessment will be submitted to Academic Integrity for a second opinion and further investigations.

Example invalid form file feedback

Join our 150К of happy users

Get original papers written according to your instructions and save time for what matters most.