BANASD603 Applied Optimisation in Business

 

ASSESSMENT 2 BRIEF
Subject Codeand TitleBANASD603 Applied Optimisation in Business
AssessmentData pre-processing and business proposal
Individual/GroupIndividual
Length1,000 words(+/- 10%)
Learning Outcomes

The Subject Learning Outcomes demonstrated by successful completion of the task below include:

  1. Appraise how optimisation techniques improve data-driven and model-driven performance in solving business problems.
  2. Critique the selection of optimisation techniques to solve a business problem.
SubmissionDue by 11:55pm AEST/AEDT Sunday end of Module 4.2(Week 8).
Weighting30%
Total Marks100 marks

 

 

Assessment Task

You are required to complete three interrelated assessments for this subject with each to be assessed independently on their own merits. Assessment 2 requires you to produce a 1,000-word business proposal that: (1) demonstrates that data has been obtained and prepared; and (2) critiques the selection of analytical techniques to solve a business problem. The submission will include evidence of the data pre-processing steps taken and a business proposal critiquing how analytical techniques will be selected.

Please refer to the Instructions for details on how to complete this task. To be successful in this assessment, you are required to read the resources provided in Modules 2 to 4.

 

 

Context

Assessment 2 will prepare you to solve a business problem using your dataset for analysis. Translating a business problem into an optimisation and analytics solution is a process that requires significant preparation. Firstly, you must understand the business problem. Secondly, you must obtain and prepare the data to solve that problem. Thirdly, you must identify optimisation and analytical goals and techniques. Only after this preparation can you effectively perform the analysis and map the problem and goals to one or more business patterns. Therefore, preparation work is essential for a professional data analyst to perform before solutions to business problems can be discovered. In completing Assessment 2, you will gain the skills to identify an appropriate business


 

problem, obtain and prepare data to solve that problem, and utilise the tools and methods to confidently provide quality analysis.

 

Instructions

 

Obtain and prepare data for an in-depth analysis of a business problem and produce a business proposal of 1,000 words (+/- 10%) that critiques your selection of analytical techniques. To be successful in this assessment, you are required to read the resources provided in Modules 2 to 4. Please complete the following three key tasks:

 

 

  1. Identify business problem andselected dataset

Assessment 2 is the second of three interrelated assessments in this subject with each to be independently assessed. Therefore, in Assessment 2, you can modify or even change the business problem and/or the selected dataset originally proposed in Assessment 1, based on the feedback you have received. Refining the problem and dataset will ensure that it aligns with the requirements for Assessment 2.

 

If you select a public dataset, a valid link to the dataset must be provided. If selecting a private dataset, a separate file must be uploaded when submitting your business proposal for this assessment. The best approach is to download and compress the dataset as a .zip file and submit this file together with the research report, using the following naming convention: BANASD603_LastnameFirstname_Assessment2Dataset.zip

Full instructions for how to do so will be provided by your Learning Facilitator. Any alternative approach to submitting your dataset file (such as providing a link to a shared drive), must be negotiated with your Learning Facilitator.

 

Since completing Assessment 1, if you decide to switch to a private dataset, remember that it is your responsibility to obtain permission from the data owner to use that data (e.g., from your employer). Usually, access to public datasets does not involve such privacy concerns.

 

  1. Obtain and prepare data using SAS Viya

An optimisation tool called SAS Viya will be used as the basis for Assessment 2.

SAS Viya is a powerful data mining tool used to provide valuable analytical insights (introduced in Module 1). To access SAS Viya, you will be given instructions for enrolling in SAS AcademicsOnDemand, an online platform through which the software is freely available for use in this assessment. For detailed instructions, refer to the Essential Resources provided in Module 2.

 

 

  1. Critique the selection of suitable analysis technique(s) for solving a business problem

Your 1,000-word (+/- 10%) business proposal should be structured using the following headings (each section is not given equal weighting):


 

  • Title Page:

    • include subject ID and name, student ID, email and name, Learning Facilitator name and date of submission.
    • Table of contents
    • Introduction
    • Business problem:
      • Describe the project scenario by explaining the business problem your project will solve.
    • Data:

      • Identify the dataset you will use for the analysis.
      • Provide a link to the dataset if you select a public dataset or submit a compressed dataset file with this business proposal if you select a private dataset.
      • Critique the appropriateness of the dataset for solving your project’s business problem by explaining how analysis might identify business patterns.
    • Data Preparation:

      • Explain why headings in the dataset are relevant to your problem.
      • Explain any data preparation performed on the dataset.
      • Audit the data to identify any data issues including relevant output and graphs.
    • Building model:

      • Provide a brief explanation of SAS Viya’s applicability to your problem and how the tool will be used.
      • Provide a brief description of the analysis technique you intend to use on the data, such as regression, clustering, classification and so on.
        • Exclude analysis techniques that indirectly operate on data such as genetic algorithms or linear programming.
    • Ethical and legal considerations:

      • Identify potential risks with using the dataset for a given context.
        • Consider ethical, legal, global or cultural factors in your response.
    • Conclusion

    • References
      • At least 3 academic references are required.
      • Other references, including web references, can be included. Any cited or sourced material must be properly referenced.
    • Appendix (any appended material needed is not included in the word count):

      • Include screenshots of SAS Viya to support your answers.
  1. Data section: data preparation performed.
  2. AnalyticsMethod section: model applicability.

 

Referencing

It is essential that you use appropriate APA style for citing and referencing research. Please see more information on referencing in the Academic Skills webpage.

 

 

Submission Instructions


 

Submit this assessment via the Assessment link in the main navigation menu BANASD603: Applied Optimisation in Business.

 

If you select a private dataset, your submission will consist of the following two documents:

  1. The dataset compressed in .zip format using the following naming convention:

BANASD603_LastnameFirstname_Assessment2Dataset.zip

  1. The business proposal as a Word .doc format using the following naming convention: BANASD603_LastnameFirstname_Assessment2BusinessProposal. doc

    Note: To include a second file in your submission, once your first item has been uploaded, click

    Browse Your Computer’ to attach the extra documents. Then, click Final Submit button.

    Your Learning Facilitator will provide feedback via the Grade Centre in the LMS portal. Feedback can be viewed in My Grades.

 

 

Academic Integrity

All students are responsible for ensuring that all work submitted is their own and is appropriately referenced and academically written according to the Academic Writing Guide. Students also need to have read and be aware of the Torrens University Australia Academic Integrity Policies, Procedures and Forms and the subsequent penalties for academic misconduct. These are viewable online.

Students also must keep a copy of all submitted material and any assessment drafts.

 

 

Special Consideration

To apply for special consideration for a modification to an assessment or exam due to unexpected or extenuating circumstances, please consult the Assessment Policy for Higher Education Coursework and ELICOS and, if applicable to your circumstance, submit a completed Application for Assessment Special Consideration Form to your Learning Facilitator.


 

Assessment Rubric

 

 

Assessment Attribute

Fail

(Yet to achieve minimumstandard)

0-49%

Pass (Functional) 50-64%Credit (Proficient) 65-74%Distinction (Advanced) 75-84%High Distinction (Exceptional) 85-100%

Data and preparation

 

 

Total Percentage for this Assessment Attribute = 35%

10% Dataset available and working
Dataset is unavailable and not fit-for-purpose.

Dataset is available and somewhat relevant.

Limited details of appropriateness are provided.

Dataset has the basics required to solve the identified business problem with explanations of data appropriateness provided.

Dataset properly represents big data andsource provided (with at least 500 rows).

The appropriateness of the dataset is explained.

Dataset properly represents big data andsource provided (with at least 500 rows).

The appropriateness of the dataset is comprehensively explained.

5% Screenshot supplied
No SAS Viya screenshot  isScreenshot is included inScreenshot is included in the report and can prove successful registration of SAS
included in the businessthe business proposal butViya.  
proposal.does not prove   
 registration of SAS Viya.   
10% Data Preparation

Headings are inappropriate or missing.

AND

Headings are inappropriate or missing.

OR

Headings are appropriate  but lacks clarity.

OR

Headings are appropriate and clear.

Data preparation is explained with only

Headings are essentially self-explanatory.

Data preparation is well- explained with no

discernible errors

  
 


 


 

 

 Data preparation is very poorly done and unexplained.Data preparation is insufficiently explained  with numerous errors identified in the preparation.Data preparation is explained but there are errors identified in the preparation.minor errors identified in the preparation.identified in the preparation.
10% Dataset Audit
Dataset audit is not undertaken and no outputs or graphsare identified.Dataset audit is poorly undertaken with issues weakly identified. No or very limited outputs or graphs are provided.Dataset audit is undertaken with basic issues identified. Limited or no outputs and graphs are provided.

Dataset audit is satisfactorily undertaken.

Outputs and graphs are provided to demonstrate  identification of the issues.

Dataset audit is expertly handled with clear outputs and graphs providedto demonstrate comprehensive work undertaken to identify the issues.

Identifies analytical techniques

Total Percentage for this Assessment Attribute = 20%

10% Identify Analysis Technique and application of Software
Inappropriate or missing identification and explanation of analytical  techniques and their appropriateness.

Limited identification and explanation of analytical techniques and their appropriateness.

Limited or no explanation of how software will be applied.

Satisfactory identification and explanation of analytical techniques and their appropriateness.

Some attempt is made to understand how software will be applied.

Appropriate identification and explanation of analytical  techniques and their appropriateness.

Demonstrates proper understanding and application of the software tools.

Outstanding identification and explanation of analytical  techniques and their appropriateness.

Demonstrates expert understanding and application of the software tools.

10% Description of the Analysis Technique


 

 

 Misunderstanding of analytical technique as evidenced by the description.A basic explanation of analytical technique is provided with numerous  errors and missinglogic.An adequate explanation of analytical technique is provided with some errors and missing logic.A thorough explanation of analytical technique and its relevance to the data and problem is provided.A clear and excellent explanation of analytical technique  with strong support for its relevance to the data and problem is provided.

Alignment of dataset, business problem and analytical technique

Total Percentage for this Assessment Attribute = 20%

20%
Oversimplified or inconsistent explanation  of alignment.Limited understanding or weak explanation of alignment.Basic explanation but showing some understandings of the alignment with analytical technique.Clear explanation but missing technical elements while explaining alignment.Exceptional work explaining alignment and how it relates to the analytical technique.

Ethical, legal, global or cultural factors

Total Percentage for this Assessment Attribute = 15%

15%
Ethical, legal, global or cultural factors are missing or not relevant to the given context.Ethical, legal, global or cultural factors are partially relevant to the given context.Ethical, legal,global or cultural factors are mostly relevant to the given context.A good discussion of ethical, legal, global or cultural factors which are relevant to the given context.A high-quality discussion of ethical, legal, global  or cultural factors which are relevant to the given context.
 3% Academic Referencing

Does not applyAPA referencing style.

Citations are not

Applies basic APA

referencing style  with numerous

Applies adequate

APA referencing style withonly minor

Applies APA

referencing style  with no errors.

Applies APA

referencing style  with no errors.


 

 

Referencing, resources and communication

Total Percentage for this Assessment Attribute = 10%

present in the business proposal.errors. Citations are present in the business proposal.errors. Citations are present in the business proposal.Citations are present in the businessproposal.Citations are present in the businessproposal.
3% Relevance of References
Demonstrates inconsistent use of good-quality, credible and relevantresources to support and develop ideas.Demonstrates use of credible and relevant resources to support and develop ideas,but these are not always explicit or well-developed.Demonstrates use of credible and relevant resources to support and develop ideas.

Demonstrates use of good-quality, credible and relevantresources to support and develop arguments and statements.

Shows evidence of wide scope within the organisation for sourcing evidence.

Demonstrates use of high-quality, credible and relevant resources to support and develop arguments and position statements.

Shows evidence of wide scope within andwithout the organisation for sourcingevidence.

4% Communication

Writing is done with limited focus on the topic and without proper logic flow.

Numerous paragraphs are written with littleor no attention to transitions within and between paragraphs.

Writing is done with some focus and conciseness while some ideas are expressed without proper logic flow.

Some paragraphs are written without proper attention to transitions within and between paragraphs.

Most writing is donewith focus and conciseness while some ideas are expressed without proper  logic flow.

Most paragraphs are written with proper attention to transitions  within and between paragraphs.

Most writingis done with focus, conciseness and proper logic flow.

Most paragraphs are written with proper attention to transitions  within and between paragraphs.

Writing is highly coherent  and concise with logic flow and smooth transition within and between paragraphs.


 

 

      

 

 

The following SubjectLearning Outcomes areaddressed in thisassessment
SLO b)Appraise how optimisation techniques improve data-driven and model-driven performance in solving business problems.
SLO c)Critique the selection of optimisation techniques to solve a business problem.

 

Example invalid form file feedback

Join our 150К of happy users

Get original papers written according to your instructions and save time for what matters most.