MME506A Advanced Fluid Dynamics Assignment Help

Master of Engineering

(Mechanical)

Unit codeMME506A
Unit nameAdvanced Fluid Dynamics
Assessment #2
Paper #A
Version #1
Created byVijay Kumar VeeraDate15 Aug 2024
Reviewed by

Mahadi Hasan

Masud

Date16 Aug 2024

Assessment Instructions:

  1. Please familiarise yourself with the EIT Academic Honesty and Misconduct Policy, in order to understand your requirements and responsibilities as a student of EIT.
  2. Please refer to our Assessment, Moderation and Student Progress Procedure for information relating to extensions. Extension requests should be submitted to your LSO at least 3 days prior to the due date.
  3. Assessments submitted via email will not be accepted.
  4. Assessments must be submitted through Turn-it-in (unless otherwise stated). Your submission must:
  5. Be a single document (Word or PDF only)
  6. Include at least 20 words of machine-readable text, and
  7. Not exceed 10MB.
  8. You must use the provided assessment cover page available on your Moodle student homepage. Submissions without a cover page will not be accepted.
  9. You must correctly title your document/s. For example:

UNIT#_ASSESSMENT#_YOURNAME_DATE

E.g. ME501_Assessment3_SteveMackay_01Aug2019

  1. You must reference all content used from other sources including course materials, slides, diagrams, etc. Do not directly copy and paste from course materials or any other resources. Refer to the referencing section of the EIT eLibrary on Moodle for referencing guides.
  2. It is your responsibility to check that you have submitted the correct file, as revised submissions are not permitted after the due date and time.

Important note: Failure to adhere to the above may result in academic penalties. Please refer to the unit outline or EIT Policies and Procedures for further information.

Please complete your answers on the assessment cover page document available on Moodle.

Clearly label your question numbers (there is no need to copy the full question over). Include all working out.

Case Study Problem: (50 marks)

Generate a computational domain, state the governing equations and boundary conditions, generate the grid, and calculate stationary laminar flow of air (𝜌 = 1 kg/m3, 𝜇 = 1 × 10−5 𝑃𝑎 ∙ 𝑠) over a spinning circular cylinder (figure below). Inlet velocity is 10 m/s, rotational speed of the cylinder is 100 rad/s, and the diameter of cylinder is 0.1m.

In which direction is the side force on the body, up or down? Explain. Plot streamlines in the flow. Where is the upstream stagnation point?

Figure 1: Physical problem for flow around a rotating cylinder. Source: Y. Çengel, J. Cimbala, Fluid Mechanics. 4th ed. New York, N.Y: McGraw Hill Education, 2018

Ensure your CFD analysis report has the following key sections:

  1. Explanation on the strategy used to create the geometry.                                       (5 marks)

 

  1. Explanation on the strategy used to mesh the domain.                                             (5 marks)

 

  1. Explanation on how the Simulation is set up in the CFD solver.                                (5 marks)

 

  1. Explanation of the boundary conditions used.                                                           (5 marks)

 

  1. Explanation of the solver settings used to run the simulation.                                  (5 marks)

 

  1. Post process the simulation to obtain key features of the flow field.                        (10 marks)

 

  1. Comparison between CFD results and theory depicting the flow field around a rotating Cylinder for the considered flow speeds.                                                                                             (5 marks)
  2. Create a 5-minute demonstration.                                                                             (10 marks) The requirements are as follows:
    • Select any one of the questions above. Create and submit a Loom video with webcam ON (showing your face) and screen capture showing how you use the software to complete the tasks. The video length should NOT be more than 5 minutes. So, practice well before recording.

Important: This video is one of the mandatory requirements and if you don’t submit this video,

your assessment marks will be zero.

  • The guidelines on how to create a Loom video: https://www.loom.com/share/159e007948ce4cb8acfee8a99615f388
    • The requirements are as follows:
      • Select any one of the above questions in this assessment.
      • Create a Loom Video: (a) Introduce yourself (b) Demonstrate how you use the software, and also explain (speak) the solution/simulation while you are running it.
      • Paste the link of your recording within your assessment report.

Demonstration Grading Rubric

Presenter name:
Assessment CriteriaOut of:Score:
Contents/Objectives1 
Bullet points - not sentences1 

 

Diagramsand tables (Visible size, Labelling)1 
Slide Quality (slide numbering, visible font size)1 
No spelling/grammar mistakes1 
Clear information and explanation3 
Voice modulation - not monotone1 
Time management – completes withingiven timeframe1 
Total:10 

END OF ASSESSMENT

Marking rubric overleaf

Assessment Criteria

High Distinction (85-

100%)

Distinction (75-84%)Credit (65-74%)Pass (50-64%)Fail (0-49%)

 

Geometry Creation (5marks)

Clearly presents steps taken to generate the fluid domain for the problem.

Highlights the challenges facedand explains how these were overcome using best practices discussed in the tutorials.

Exhibits clarity, complexity, perceptiveness, originality, and depth of thought about the topic.

Clearly presents steps taken to generate the fluid domainfor the problem.

Highlights thechallenges faced butfails to explain how these were overcome using best practices in one of the instances.

Exhibits clarity, and some depth about the analysis of the standard, but lacks the qualities ofcomplexity, perceptiveness, and originality exhibited in level A.

Fails to Clearly presentsteps taken to generate the fluid domain for the problem.

Highlights thechallenges faced butfails to explain how these were overcome using best practices in more thanone of the instances.

Exhibits some clarity, thoughonly minimal

depth of thoughtabout the topic.

Does not clearly document the steps takento generate the fluid domainfor the problem.

Does not highlight the challenges faced and fails to explain how these were overcome using best practices in most of the instances.

Exhibit some faulty logic, and/or stereotypical or superficial thinking about

the topic.

Does not document thesteps taken to generate the fluid domain for the problem.

Does not highlight the challenges faced and fails to provide anyexplanation how these were overcome using best practices in any of the instances.

Exhibit little or no evidence

of effective thinking aboutthe topic

 

 

Mesh generation (5marks)

Clearly presents steps taken to generate the computational mesh for the problem.

Creates a mesh that captures the key regions of interest in the computational domain. Provides a clear explanation on how mesh sizings were chosen according to best practices.

Incorporates bodies of influence to limit growth of cells in regions of interest. Provides clear, easy to understand pictures of the mesh.

Clearly presents steps taken to generate the computational mesh for theproblem.

Creates a mesh that fails to capture the key regions of interest in the computational domain.

Provides a clear explanation on how mesh sizings were chosen according to best practices.

Does not incorporate bodies of influence to limit growth of cells in regions of interest. Fails to provide clear easy to understand snapshots of the mesh in one of the key regions.

Fails to Clearly presentsteps taken to generate the computational mesh for the problem.

Creates a mesh that fails to capture more than one key regions of interest in the computational domain. Fails to provide a clear explanation on how mesh sizings were chosen according to best practices.

Does not incorporate bodies of influence to limit growth of cells in regions of interest. Fails to provide clear easy to understand snapshots of the mesh in more than one of the key regions.

Does not clearly document the steps taken to generate the computational mesh for the problem.

Creates a mesh that fails to capture all the key regions of interest in the computational domain. Fails to provide a clear explanation on how meshsizings were chosen according to best practices.

Does not include key features suchas inflation layers and bodies of influence. Fails to provide clear easy to understand snapshots of the mesh in more than one of the key regions.

Does not document thesteps taken to generate the computational mesh for the problem.

Does not create a mesh for the computational domain and fails to provide a clear explanation on how mesh sizingswere chosen according to best practices.

Does not include key features such as inflation layers and bodies of influence. Fails to provide clear easy to understand snapshots of the meshin more than one of the keyregions.

Exhibit littleor no evidence of effective thinking about the topic.

 

Case Setup; Boundary Conditions; Solver settings

(15 marks)

Provides screenshots showing all the physical models used to set up the CFD case according to best practices. Provides explanation on justification for choosing these models by quoting relevant literature.

Provides screenshots showing the boundary conditions specified in the simulation.

Shows screenshots showing the solver settings used to run the simulations. Justifies these settings based on relevant documentation from the help manual.

Provides screenshots showing most of the physical models used to set up the CFD caseaccording to best practices. Provides explanation on justification for choosing these models by quoting relevant literature.

Provides screenshots showing most of the boundary conditions specified in the simulation.

Shows screenshots showing most of the solver settings used to run the simulations. Justifies these settings based on relevant documentation from the help manual.

Provides screenshots showing most of the physical models used to set up the CFD caseaccording to best practices. Fails to provide explanation on justification for choosing these models by quoting relevant literature.

Provides screenshots showing most of the boundary conditions specified in the simulation.

Shows screenshots showing most of the solver settings used to run the simulations. Fails to provide justifications on the usage of these settings based on relevant documentation from the help manual.

Fails to provide screenshots showing most of the physical models used to set up the CFD case according to best practices. Fails to provide explanation on justification for choosing these models by quoting relevant literature.

Fails to provide screenshots showing mostof the boundary conditions specified in thesimulation.

Fails to show screenshots showing most of the solver settings used to run the simulations. Fails to provide justifications on the usage of thesesettings based on relevant documentation from the help manual.

Does not provide any information on the models used to set up the case.Fails to show the boundary conditions used in the CFD model. Does not clarify the solver settings used in the simulation.

Exhibits little or no evidence of effective thinking about the topic.

 

 

Post processing (10 marks)

Provides clear, concise and high-definition imagesshowing the important fluid dynamic processes within the computational domain.

Provides an accurate, physics- based explanation on the origin of these fluid dynamic processes and provides linksto relevant documentation to corroborate the analysis.

Exhibits clarity, complexity, perceptiveness, originality, and depth of thought about the topic.

Provides clear, concise images showing the important fluid dynamic processes within the computational domain. One or two images may be lacking resolution or clarity in highlighting the key processes.

Provides a plausible explanation on the origin of the dominant fluid dynamic processes. Fails to provide links to relevant documentation to corroborate the analysis.

Exhibits clarity, and some depth about the analysis of the standard, but lacks the qualities ofcomplexity, perceptiveness, and originality exhibited in level A.

Fails to provide clear, concise images showing the important fluid dynamic processes within thecomputational domain. Some of the images may be lacking resolution or clarity in highlighting the key processes.

Provides an explanation on the origin of the dominant fluid dynamic processes without explaining the physical reasoning driving them. Fails to ratify the processes usingphysical principles. Fails to provide links to relevant documentation to corroborate the analysis.

Exhibits some clarity, thoughonly minimal depth of thought about the topic.

Fails to provide clear, concise images showing most of the important fluid dynamic processes within the computational domain. Majority of images may be lacking resolution or clarity in highlighting the key processes.

Fails to provide an explanation on the origin of the dominant fluid dynamic processes. Fails to explainthe physical reasoning driving them. Fails to ratify the processes using physical principles. Fails to provide links to relevant documentation to corroborate the analysis.

Exhibit some faulty logic, and/or stereotypical or superficial thinking about the topic.

Does not provide any pictures showing the fluid dynamic processes within the computational domain.

Exhibits little or no evidence of effective thinking about the topic.

 

Mesh independence study (5 marks)

Creates a table to show the simulation conducted for various mesh resolutions. Compares the key observable quantities (Forces and pressure drop) for various mesh resolutions to identify the mesh resolution (via mesh settings) needed to arrive at a meshindependent solution.Creates a table to show the simulation conducted for various mesh resolutions. Fails to compare all the key observable quantities (Forces and pressure drop) for various mesh resolutions to identify the mesh resolution needed to arrive at a mesh independent solution.Fails to create a table to show the simulation conducted for various mesh resolutions. Fails to compare all the key observable quantities (Forces and pressure drop) for various mesh resolutions. Does not clearly identify the mesh resolution (via mesh settings) required to arrive at a mesh independent solution.Provides a rudimentary explanation on mesh independence study. Does not provide sufficient information on the various mesh resolutions used to arrive at the mesh independent solution. Fails to specify the mesh resolution required to arrive at mesh independent solution.

Has no mention of a section on mesh independence studyin the report.

Exhibits little or no evidence of effective thinking about the topic.

Master of Engineering (Mechanical)     

Example invalid form file feedback

Join our 150К of happy users

Get original papers written according to your instructions and save time for what matters most.